
L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 1 | 39

OBJECT-ORIENTED PROGRAMMING REPORT

Table of contents

U3_1.1 The key features of object-oriented programming. ... 2

SHORT DESCRIPTION OF KEY FEATURES OF OOP .. 2

EXAMPLE OF KEY FEATURES (PYTHON)... 3

U3_1.2 Explain the importance of encapsulation, inheritance and polymorphism in object-oriented

programming. ...10

U3_2.1 Demonstrate the use of object-oriented tools and techniques. ..11

U3_3.1 Design an object-oriented program ...13

U3_3.2 Develop an object-oriented program. ..18

U3_4.1 Test an object-oriented program. ...21

Picture1 “Evidence1 for TC_3_ dec30” ...23

Picture2 Evidence for TC_4_UniqueCard ...24

Picture3_” Evidence for TC_5_shuffled” ..25

Picture4_”Evidence for TC_5_AfterShuffle” ...25

Picture5 “Evidence for TC_6_SameColor” ..26

Picture6 “Evidence for TC_7_DiffColor” ...26

Picture7 “Evidence for TC_8_ WinList” ..27

Picture8 “Evidence for TC_12_ TopWin” ..27

U3_4.2 Document appropriate action to correct errors. ...29

U3_4.3 Create technical documentation for the support and maintenance of the program.31

Installation and usage instructions ...31

Requirement specifications for LUISE’S CARD GAME ...34

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 2 | 39

U3_1.1 The key features of object-oriented programming.
Object-oriented programming (OOP) is a programming paradigm that organises

code into objects, which are like real-world entities that have attributes (data) and

behaviors (functions).

By using these key features of object-oriented programming, developers can

create modular, reusable, and organized code that mimics real-world entities and

relationships, making it easier to manage and maintain complex software systems

Here are the key features of OOP explained below.

SHORT DESCRIPTION OF KEY FEATURES OF OOP

• CLASSES are like blueprints or templates for creating objects. They define the

attributes (data) and behaviors (functions) that objects of that class will have.

• OBJECTS are instances of classes. They represent specific instances of the

class with their own unique data and behavior.

• ENCAPSULATION is the idea of bundling data (attributes) and methods

(behaviors) together within a class. It helps in hiding the internal workings of an

object and only exposing necessary information.

• INHERITANCE allows a new class (subclass) to inherit attributes and behaviors

from an existing class (superclass). This promotes code reusability and helps in

creating a hierarchy of classes.

• POLYMORPHISM allows objects of different classes to be treated as objects of

a common superclass. This means that different objects can respond to the

same message (function call) in different ways.

• METHOD OVERRIDING: In method overriding, a subclass can provide a

specific implementation for a method that is already defined in its superclass.

This allows the subclass to customize or extend the behavior of the inherited

method.

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 3 | 39

• METHOD OVERLOADING: Method overloading enables a class to have

multiple methods with the same name but different parameters. This allows

developers to create methods that perform similar tasks but with different

inputs, making the code more flexible and easier to use.

• CONSTRUCTORS AND DESTRUCTORS: Constructors are special methods

used to initialize objects when they are created. They typically set initial values

for object attributes. Destructors, on the other hand, are used to clean up

resources and perform necessary actions before an object is destroyed or goes

out of scope.

EXAMPLE OF KEY FEATURES (PYTHON)

CLASSES and OBJECTS 

Let's consider using built-in, primitive data structures as an option and alternative to

Classes. Primitive data structures - like numbers, strings, and lists - are designed to

represent straightforward pieces of information, such as the cost of an apple, the

name of a poem, or your favorite colors, respectively. But if we want to represent

something more complex, we have to use Classes.

CLASSES & OBJECTS 

description

example of code

Primitive data structures

For example, we might want to
track employees in an
organization. We need to store
some basic information about
each employee, such as their
name, age, position, and the
year they started working

One way to do this is to represent each employee as a list

Issues with Primitive data
structures

From the previous example,
there are several issues with
this approach:
- make larger code files more

difficult to manage.
- can introduce errors if

employees don’t have the
same number of elements in
their respective lists.

In the mccoy list above, the age is missing,
so mccoy[1] will return "Chief Medical Officer" instead
of Dr. McCoy’s age.

So, a great way to make this type of code more
manageable and more maintainable is to use classes.

https://realpython.com/python-list/

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 4 | 39

Define a class by using

the «class» keyword followed

by a name and a colon. Then we

use .__init__() to declare

which attributes each instance

of the class should have.

We define a class

Employee with attributes for

name, age, position, and start

year. The __init__ method is

used to initialize these attributes

when an object of the class is

created. We also define a

method display_info to print out

the information about an

employee.

An object is called an instance

of a class. Suppose Employee

is a class then we can create

objects

like employee1, employee2, etc

from the class.

So, I create two instances of the

Employee class

(employee1 and employee2)

and display their information

using the display_info method.

Using classes in Python helps organize related data and functionality into a
single unit, making the code more manageable and maintainable. It also allows for
code reusability and abstraction, leading to cleaner and more structured code.

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 5 | 39

INHERITANCE  

The process of inheriting the properties of the parent class into a child

class is called inheritance. Using inheritance in this way allows us to reuse code from

the base class and extend it in the derived class, providing a more structured and

organized approach to managing employee data.

The example below will demonstrate how to use inheritance in Python. The

case is Create a base class Person that stores common information about a person,

and a derived class Employee that inherits from Person and includes additional

information specific to an employee

INHERITANCE 

description

example of code

In this code, we define a base class
Person with attributes for name and
age. The Employee class is derived
from the Person class and adds
attributes for position and start year.
The __init__ method in the
Employee class calls the
__init__ method of the base class
using super().

Also, override the
display_info method in the
Employee class to include
information specific to an employee
while still displaying the common
information from the base class

.

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 6 | 39

ABSTRACTION

Abstraction in Python involves hiding the complex implementation details

of a class and only exposing the necessary information or functionality to the

outside world. This helps in simplifying the usage of the class and focuses on what the

class does rather than how it does it. In the context of tracking employees in an

organization, we can use abstraction to define a base class with abstract methods that

represent the common functionality every employee should have, without providing the

specific implementation. Subclasses can then inherit from this base class and provide

their own implementations for these abstract methods.

ENCAPSULATION

Encapsulation in Python involves bundling the data (attributes) and methods

(functions) that operate on the data within a class, and restricting access to the internal

data by using access modifiers such as public, private, and protected. This helps in

preventing external code from directly modifying the internal state of an object and

promotes data hiding and information hiding.

Let's demonstrate encapsulation in Python with an example of tracking

employees in an organization:

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 7 | 39

ENCAPSULATION  

description

example of code

In this example, we define a class

Employee with attributes _name,

_age, _position, and __start_year.

The attributes _name, _age, and

_position are marked as protected

by prefixing them with a single

underscore. The attribute

__start_year is marked as private by

prefixing it with double underscores.

We provide a method display_info to

display the employee information,

and getter and setter methods

get_start_year and

set_start_year to access and modify

the private attribute __start_year.

When we try to directly access or

modify the private attribute

__start_year, Python raises an

AttributeError. Instead, we use the

getter and setter methods to interact

with the private attribute, ensuring

encapsulation and controlled access

to the internal state of the object.

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 8 | 39

POLYMORPHISM 

Polymorphism is another important concept of object-oriented programming. It

simply means more than one form.

That is, the same entity (method or operator or object) can perform different operations

in different scenarios. The built-in function len() calculates the length of an object

depending upon its type. If an object is a string (x=«banana»), it returns the count of

characters (x=6), and If an object is a list (a), it returns the count of items in a list(a=3).

.

In the context of tracking employees in an organization, we can create a

superclass called Employee that contains common attributes and methods shared by

all employees. Then, we can create subclasses for different types of employees, such

as Manager, Engineer, and Intern, which inherit from the Employee superclass.

Here's an example to illustrate polymorphism in Python for tracking employees. By using

polymorphism, we can treat instances of Manager, Engineer, and Intern as instances of the

Employee superclass. This allows us to call the display_info() method on any employee object,

regardless of its specific subclass, and get the relevant information displayed.

https://pynative.com/python-lists/

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 9 | 39

POLYMORPHISM  

description

example of code

In this example, we define a

superclass Employee with

attributes name, age,

position, and start_year, as

well as a method

display_info() to print out

the information about an

employee. We then create

subclasses Manager,

Engineer, and Intern, each

with their own specific

implementation of the

__init__ method.

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 10 | 39

U3_1.2 Explain the importance of encapsulation, inheritance and polymorphism

in object-oriented programming.

Encapsulation

 Helps in data hiding, reducing complexity, and providing a clear interface for

interacting with the class. It ensures that data is accessed and modified in a controlled

manner, enhancing security and maintainability.

• Security - protects an object from unauthorized access

• Simplicity - keeping classes separated and preventing them from tightly coupling
with each other.

• Aesthetics - Bundling data and methods within a class makes code more

readable and maintainable

Inheritance

Inheritance reduces code duplication by allowing derived classes to reuse the

properties and methods defined in the base class. Developers don't have to write the

same code multiple times in different classes when a common functionality exists.

This mechanism fosters code reusability, allowing the derived class to leverage the

attributes and methods of the base class.   It establishes a hierarchical relationship,

promoting a structured and organized codebase. Inheritance enables the creation of

specialized classes that build upon the functionality of more generalized ones,

enhancing modularity and easing maintenance.

Inheritance is the process of extending the existing code functionality for removing

the repetitive coding work, as a result, it leads to reduced development time.

Polymorphism

Polymorphism means “one name many forms” that allow developers to provide

multiple elements depending on the object type. This will permit developers to redefine

the whole work and define how it can be done by updating the parts in which it was

previously performed. Polymorphism terms are known as overriding and overloading.

Method Overriding enhances code extensibility, allowing developers to tailor the

functionality of inherited methods to suit the specific requirements of individual

subclasses. This dynamic behaviour during runtime contributes to the power and

versatility of OOPs. 

Overloaded methods provide a cleaner, more readable codebase, as

developers can invoke the same method name with different argument sets.  

This feature streamlines the development process, making it easier to work with

diverse data types or handle various scenarios without cluttering the code with multiple

method names. Method overloading is a critical element in OOPs, contributing to code

versatility and maintainability. 

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 11 | 39

U3_2.1 Demonstrate the use of object-oriented tools and

techniques.

During my study of Python, I developed the «Louise Game». I’d like to show

below examples of the use of these key features (also there are some of examples in

the previous paragraph 1.1 «The key features of object-oriented programming.

Below introduced a few pieces of code from the project «Luisa game».

In the example I have created a PlayerDatabase class with method

read_players_from_file to the PlayerDatabase class that reads player information from

a file and adds it to the database. The file is assumed to have player information

separated by a comma.

Functions in Python. I have used my functions in programming to bundle a set of

instructions I want to use repeatedly:

 In a card desk I have got FullCardslist = ['Red#1','Red#2','Black#11','Yellow#1'].

With function pop(0) FullCardslist.pop(0). I create a variable colling Card, where Card =

Color#Namber - it is a string for example Red#1. With method split() I’ve got ['Red','1']

(Card.split("#", 2)). As resalt I can receive color and number Color = print(Card[0]) ,

Namber = print(Card[1])

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 12 | 39

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 13 | 39

U3_3.1 Design an object-oriented program

LOUISE’S GAME.

Louise is creating a card game for two players.

Basic parameters Additional information

Number of players 2
Only authorised players are allowed to play the

game.

Number cards 30 The 30 cards are shuffled and stored in the deck.

Each card unique

Each card has one colour (red, black or yellow).

Each card has a number (1, 2, 3, 4, 5, 6, 7, 8, 9,

10) for each colour.

Cards colour’s

Red

 Black

Yellow

RED beat BLACK
BLACK beat YELLOW
YELLOW beat RED

How to play

✓ Player 1 takes the top card from the deck.

✓ Player 2 takes the next card from the deck.

✓ If both players have a card of the same colour, the player with the highest

number wins.

✓ If both players have cards with different colours, the winning colour is shown

in the table.

✓ The winner of each round keeps both cards.

✓ The players keep playing until there are no cards left in the deck.

Additional requirements

✓ Lists all of the cards held by the winning player.

✓ Stores the name and quantity of cards of the winning player in an

external file.

✓ Displays the name and quantity of cards of the 5 players with the highest

quantity of cards from the external file.

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 14 | 39

 A graphical representation of an algorithm was done using flowchart tools

(Lucidchart and MsVisio). A flowchart illustrates the steps of a program graphically.

The following design was created according to the given conditions.

The whole game is divided into three large blocks, in each of which certain steps

meet the requirements.

Game’s design consists of three pictures/ flowcharts.

The first picture below shows all the main events of the game.

The next picture shows details for the second block «Round by round

comparison», finally third picture – explains the block «Determine and show who won»

The authorization part in the current version is simple, so it is not presented

separately in the document. however, for the future, I would like to add the ability to join

new players, as well as check whether such a player has already registered, as well as

check the reliability (length) of the password

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 15 | 39

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 16 | 39

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 17 | 39

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 18 | 39

U3_3.2 Develop an object-oriented program.
Using Python programming language I developed a working prototype of

Louise’s game.

Below you can see parts of the code that were executed using Replit, also

there are explanations for how initially designed the algorithm and then later tested

the solution (U3_4.1).

Output:

https://replit.com/@svitlanaradchen/Unit3RedBlackGame

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 19 | 39

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 20 | 39

Output

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 21 | 39

U3_4.1 Test an object oriented program.
Manual testing is a type of software testing where testers manually execute test

cases without using any automation tools. Manual testing involves human intervention

to identify defects in the software application.

Date
of

test

Component to be

tested
Type of test to be

carried out
Prerequisites and

dependencies

 Login with Username and
Password

White box testing
Analyse the code

Password should belong to
Username which will be used
for entering to the game

 Login with Username and
Password

Black box
Alpha Testing

If Username is not in the list
show the warning “You must be
registered first”

 Game just for 2 gamers

White box testing
Black box
Alpha Testing

If there are only one player,
then game should not start
Waiting time is 2 min and then
finish the game if there only 1
gamer

 Card game White box testing

Make sure that the color and
number belong to the same
card

Here are some appropriate test data for the card game which cover various
aspects of this game, including authorization, deck initialization, game play mechanics,
and data storage/display requirements. These test cases match with part of the DATA
REQUIREMENTS from the Requirement specification

ID TEST CASES (TC) EVIDENCE OF
TESTING

PLAYER AUTHORIZATION:

TC_1 Verify that an unauthorized player cannot access
the game.

Test log in U3_4.2

TC_2 Verify that an authorized player can access the
game.

Test log in U3_4.2

DECK INITIALIZATION:

TC_3 Verify that the deck contains 30 unique cards.
Steps

1. Check is there txt file with card as require
2. Include in code part with displaying how is process of

shuffle going.
3. Run the game.
4. After proper testing this part of code can be commented

Picture1 Evidence for
TC_3_ deck30

TC_4 Verify that each card has a unique color and
number.

Steps
1. Open the CardDeck.txt before run the game

Picture2 Evidence for
TC_4_UniqueCard

Not necessary as
CardDeck.txt created

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 22 | 39

ID TEST CASES (TC) EVIDENCE OF
TESTING

2. Make sure that deck consist of red, yellow and black
cards with numbers from 1 to 10

according to the rule and
should be consist of red,
yellow and blac cards.

TC_5 Verify that the deck is shuffled and stored in a

random order.
Steps

Option 1 (just wite boxing test)
1. Check just code – make sure that code include import of

random and method shuffle.
Option 2 (mix of wite and black boxing test)

1. Check is there txt file with card as require
2. Include in code part with displaying how is process of

shuffle going.
3. Run the game.
4. After proper testing this part of code can be commented

Picture3
“Evidence for TC_5_ shuffled”

Picture4
Evidence for
TC_5_AfterShuffle”

GAMEPLAY MECHANICS

TC_6 Verify the game determines the winner correctly
when both players have cards of the same color
with different numbers.

1. Include in the code part with displaying how is process
going.

2. Check manually with the game rule

Picture5 Evidence for
«TC_6_SameColor»

TC_7 Verify the game determines the winning color
correctly when players have cards of different
colors.

1. Include in the code part with displaying how is process
going.

2. Check manually with the game rule

Picture6 Evidence for
‘TC_7_DiffColor”

TC_8 Verify that the winning player keeps both cards
after each round.

1. Include in the code part with displaying how is process
going after each round

2. Check manually the external file “GamesResult” and the
explanation from concole

Picture7
“Evidence for TC_8_WinList”

TC_9 Verify that the game ends when there are no
cards left in the deck.

The same picture as for TC_8

DATA STORAGE AND DISPLAY

TC_10 Verify that the system lists all the cards held by
the winning player after each round.

The same picture as for TC_8

TC_11 Verify that the system stores the name and
quantity of cards of the winning player in an
external file.

The same picture as for TC_8

TC_12 Verify that the system displays the name and
quantity of cards held by the top 5 players with the
highest quantity of cards from the external file.

Picture8
“Evidence for TC_12_TopWin”

_Evidence_for#_Picture4_
Evidence_for_TC_5_AfterSh#_Picture5_
Evidence_for_TC_5_AfterSh#_Picture5_
Evidence_for#_Picture6_
Evidence_for#_Picture7_
Evidence_for#_Picture7_
Evidence_for#_Picture7_
Evidence_for#_Picture7_

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 23 | 39

ID TEST CASES (TC) EVIDENCE OF
TESTING

Picture1 “Evidence1 for TC_3_ dec30”

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 24 | 39

Picture2 Evidence for TC_4_UniqueCard

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 25 | 39

Picture3_” Evidence for TC_5_shuffled”

Picture4_”Evidence for TC_5_AfterShuffle”

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 26 | 39

Picture5 “Evidence for TC_6_SameColor”

Picture6 “Evidence for TC_7_DiffColor”

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 27 | 39

Picture7 “Evidence for TC_8_ WinList”

Picture8 “Evidence for TC_12_ TopWin”

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 28 | 39

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 29 | 39

U3_4.2 Document appropriate action to correct errors.

Description of test Test data to be used
(if required)

Expected
outcome

Pass / Fail Comments and intended
actions

AUTHORIZATION TESTING

Normal data

Enter acceptable
username for player one

Lana Entry allowed Pass Access was allowed but no
conformation message

Should be same kind of
Hello and welcome back, Lana!

Enter acceptable
password for player one

123456 Entry allowed Pass Explain why this prototype
required entering of second player
Like this
Sorry, but you can't go on alone

Enter acceptable
username for player one

Piter Entry allowed Pass

Enter acceptable
password for player one

456789 Entry allowed Fail Mistake is Invalid name for piter
or password 456789
Clarify what exactly wrong
For avoiding misunderstanding

Boundary inputs

Enter non-acceptable
username (one
(Username 1 character)

L Entry not
allowed

 Pass Cancellation message needed

Enter non-acceptable
username (Username
No longer then 12)

Usernametest123

Entry not
allowed.

 Pass
Explanations about security name

and password

Username no longer than 12

characters and password longer

than 3 characters.

Enter non-acceptable
pasword.

Password
Qwerty

Entry not
allowed

 Pass Explanations about security
name and password
Password and Qwerty insecurity

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 30 | 39

Enter empty username.

Invalid inputs

 Entry not
allowed

 Pass Cancellation message needed
with explanation what exactly is
wrong / Invalid inputs

Enter username which
contains spaces

Lana lana Entry not
allowed

 Pass Cancellation message needed
with explanation what exactly is
wrong

Invalid inputs

(Unacceptable

username not on the

list)

&@@@! Entry not
allowed

 Pass Cancellation message needed

 Enter

username/password

which contains spaces. 

7777 77777 Entry not
allowed

 Pass Cancellation message needed

Erroneous inputs

Acceptable username

not on the list)

Theo

Maggie

 Entry not
allowed

 Pass Cancellation message needed.
with offer to become registered

 Acceptable username

not on the list)

Qw787

Ere7879

 Entry not
allowed

 Pass Cancellation message needed.
with offer to become registered

DATA MANAGEMENT TESTING:

Verify that the file is updated correctly after each

round to reflect the winning player's cards.

Data from the
console = data
from external
file

Pass Data from console was compared
with an external file successfully

LEADERBOARD DISPLAY TESTING

Confirm that the leaderboard displays the

correct information for the top 5 players with the

highest quantity of cards.

top 5 players

with the

highest

quantity of

cards

Fail There is the same mistake with
recording after the game. It seems
that the last winner was not added
to the list before sorting. As a
result – top5 without the latest
winner

Test the sorting mechanism to ensure that

players are ranked accurately based on their

card quantity.

top 5 players
with the
highest
quantity of
cards

Pass

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 31 | 39

U3_4.3 Create technical documentation for the support and

maintenance of the program.
All types of technical documentation fall into three main categories: product

documentation, process documentation, and sales and marketing documents.

Product documents typically cover instructions and tutorials to help end-users

accomplish a task. They include guides, illustrations, and reference sheets that cover:

Information on the requirements or system specifications users need to run the

product efficiently. Installation and usage instructions.

Maintenance guide documentation – tells the user how to maintain the system

effectively and can include a definition of the software support environment, roles, and

responsibilities of the maintenance personnel.

TECHNICAL DOCUMENTATION FOR LUISE’S CARD GAME

Installation and usage instructions

1. SETTING UP – INSTALLING THE PROGRAM
The program was created by using REPLIT, an online IDLE.

For end users, we recommend using IDLE 3.9 (Python) which is available here:
https://www.python.org/downloads/release/python-390/

The user will need 3 texts (e.g. Notepad++) to be saved at the same location:

1. CardDeck.txt

https://www.python.org/downloads/release/python-390/

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 32 | 39

2. NamesandPasswords.txt
3. GamesResult.txt
4. TopWinners.txt

Usage Instructions:

When you open Replit (web or Replit app):

- Step 1: Launch "Louise's Game" by clicking on the icon «Run»

- Step 2: You will be prompted to enter your player credentials to log in.

- Step 3: Once logged in, you can start a new game.

- Step 4: Track the game progress shown on the console

- Step 5: Answer questions 1=yes and 0=no to get information about the progress

of the game

Enjoy playing "Louise's Game" with your opponent and have fun!

Additional Information:

- Ensure that you have a stable internet connection to play the game with another

player.

- You can adjust game settings, such as sound and graphics, from the options

menu.

- If you encounter any issues or need assistance, refer to the game's help section

or contact customer support.

Feedback and Support:

- Provide feedback to the game developers regarding any issues, bugs, or

suggestions for improvement to help enhance the gaming experience for all

players.

- Contact customer support if you encounter technical difficulties or require

assistance with the game.

Troubleshooting:

- If you experience any technical difficulties during installation or gameplay, try

restarting your computer and relaunching the game.

- Check for updates to ensure you have the latest version of "Louise's Game."

- For further assistance, reach out to our support team via email or online chat.

2. HARDWARE REQUIREMENTS

The program was run and tested using Android phone (Replit app, on Android13) and PC
with a Windows10 OS. See the detailed hardware information below.

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 33 | 39

System Requirements:
- Operating System: Windows 10/8/7
- Processor: Intel Core i3 or equivalent
- RAM: 4GB or higher - Graphics: Integrated or dedicated graphics card
- Storage: 1GB of free space

More specifically information you can see as an example below

3. SOFTWARE REQUIREMENTS:

1. Player Authentication:

Only authorized players should be able to access and play the game.

Implement a secure authentication system to verify player identities.

2. Deck Management:

The game’s deck should have 30 shuffled cards, each with a unique colour

(red, black, or yellow) and number (1-10 for each colour). Develop a

mechanism to manage and shuffle the deck.

3. Gameplay Rules:

Player 1 and Player 2 take turns drawing cards from the deck.

 Determine the winner of each round based on the color and number

comparison rules specified.

Keep track of the cards won by the winning player after each round.

4. Color Comparison Rules:

Define the logic for determining the winning color when players have cards of

different colors (red beats black, black beats yellow, yellow beats red).

5. Round Completion:

The game continues until all cards in the deck are drawn. Ensure proper

handling of the end-game scenario.

6. Display Winning Player's Cards:

List all cards held by the winning player at the end of each round for

transparency and record-keeping purposes.

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 34 | 39

7. External File Storage:

Store the name and quantity of cards held by the winning player in an external

file for data persistence and retrieval.

8. Leaderboard Functionality:

Implement a feature to display the names and quantities of cards held by the

top 5 players with the highest card counts based on the data stored in the

external file.

9. Error Handling:

Include error handling mechanisms to address any unexpected scenarios that

may occur during gameplay, such as invalid card draws or file access issues.

10. User Interface:

Design a user-friendly interface that clearly displays game information, player

actions, and results to enhance the gaming experience.

11. Scalability and Performance:

Ensure that the game can handle multiple concurrent players efficiently and that

the gameplay remains smooth even as the number of players increases.

4. TESTING
Testing of the program was done using the conditions outlined in paragraph 4.1

5. DATA STRUCTURES / ALGORITHMS
Deck of Cards.

• An array or list to represent the deck of cards.

• Each card can be represented as a structure or object containing
attributes like color, number, and status (e.g., in deck, played).

• The deck can be shuffled using appropriate algorithms
Player Information:

• A structure or class to store player information, including name, score, and
cards held.

• Player data can be organized in a data structure like a hash table or
dictionary for efficient retrieval and updating.

Leaderboard

• A data structure to store and maintain player scores and rankings.

• This can be implemented using a sorted array, linked list, or priority queue
to quickly retrieve top players based on their scores.

ALGORITHMS

The program algorithms were implemented using Flowchart and are
demonstrated in paragraph 3.1

Requirement specifications for LUISE’S CARD GAME
Requirement specifications, also known as software requirements

specifications (SRS), are a comprehensive document that outlines the functional

and non-functional requirements of a software application. It serves as a blueprint

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 35 | 39

for software development by detailing what the software should do, how it should

behave, and what constraints or limitations it must adhere to. Requirement

specifications are crucial for ensuring that the software meets the needs and

expectations of stakeholders, such as clients, users, and developers.

REQUIREMENT SPECIFICATIONS
FOR LUISE’S CARD GAME

INTRODUCTION
PURPOSE AND
SCOPE

The purpose of this document is to outline the software
requirements for developing Luise's Card Game, a two-player
card game where players compete to win cards based on color
and number combinations.

The software will facilitate the gameplay of Luise's Card
Game, including managing the deck of 30 unique cards, enforcing
game rules, determining winners of each round, and storing
player data for future reference.

FUNCTIONAL
REQUIREMENTS

Number of Players
- The game will support only 2 players.
- Only authorized players are allowed to play the game.

Deck Management

- The deck will consist of 30 shuffled cards.
- Each card in the deck is unique.
- Each card has one of three colors: red, black, or yellow.
- Each card has a number from 1 to 10 for each color.

Gameplay Rules
- Player 1 takes the top card from the deck.
- Player 2 takes the next card from the deck.
- If both players have a card of the same color, the player

with the highest number wins.
- If players have cards of different colors, the winning color

hierarchy is as follows:
- RED beats BLACK
- BLACK beats YELLOW
- YELLOW beats RED
- The winner of each round keeps both cards.

- Players continue playing until there are no cards left in the
deck.

Winner Data Management
- Lists all cards held by the winning player after each round.
- Stores the name and quantity of cards of the winning

player in an external file.
Leaderboard Display

- Displays the name and quantity of cards of the top 5
players with the highest quantity of cards from the external
file.

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 36 | 39

REQUIREMENT SPECIFICATIONS
FOR LUISE’S CARD GAME

NON-FUNCTIONAL
REQUIREMENTS

SECURITY

- Only authorized players can access and play the
game.

- Player data stored in external files will be encrypted
for security purposes.

MAINTAIN-ABILITY

Using coding standards

PERFORMANCE

- The game should be optimized to run smoothly without lag
or delays during gameplay

- The game should execute efficiently and without
noticeable delays, providing a smooth and responsive
user experience during gameplay.

- Performance Requirement: The game must load within 5
seconds on all supported devices to provide a smooth and
responsive user experience.

FLEXI-BILITY

- The game should work as given, without allowing users to
customize features, workflows, or settings to suit their
preferences.

USER STORIES
USE CASES

As a player, I want to

User Story 1: Player Registration

- As a registered player, I want to be able to play the game
by providing my username and password.

User Story 2: Gameplay

- to play cards according to the game rules and see the
outcome of each round

User Story 3: Winner Declaration

- to know who the winner of each round is and see my own
progress in the game.

User Story 4: Leaderboard Display

- to see the leaderboard displaying the top players with the
highest quantity of cards.

User Story 5: Authentication

- to log in securely with my credentials and ensure that
unauthorized users cannot access the game.

User Story 6: Usability

- the game interface to be user-friendly, responsive, and
easy to navigate.

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 37 | 39

REQUIREMENT SPECIFICATIONS
FOR LUISE’S CARD GAME

BUSINESS RULES 1. Player Registration Rule:

- Players must register with a unique username and
password to access the game.

2. Game Setup Rule:
- The game must allow for a minimum of 2 and a maximum

of 4 players to participate in each game session.
3. Gameplay Rule:

- Players must follow the game rules when playing cards,
including following suit and playing valid cards.

4. Winner Declaration Rule:
- The winner of each round must be determined based on

specific criteria, such as the player with the highest card
value or the first player to play all their cards.

5. Data Management Rule:
- Game data, including player progress, scores, and game

settings, must be securely saved and retrieved for each
player.

6. Leaderboard Display Rule:
- The leaderboard must display the top players based on

the number of cards they have collected throughout the
game.

7. Authentication Rule:
- Players must log in securely using their credentials, and

unauthorized access to the game must be prevented.
8. Usability Rule:

- The game interface must be intuitive, responsive, and
accessible to players of all skill levels.

DATA
REQUIREMENTS

1. Player Authorization:

- The system must store player credentials, including
usernames and passwords, for authorization purposes.

- Player status (authorized/unauthorized) must be
maintained in the system.

2. Deck Initialization:
- The system must store a deck of 30 unique cards with

attributes such as color and number.

- Each card in the deck must have a unique combination of
color and number. - The system must have a mechanism
to shuffle and store the deck in random order.

3. Game Play Mechanics:
- The system must track the cards played by each player

during the game.

- Winning player information, including the player's name
and the cards won, must be stored.

- Game state data, such as the number of cards remaining
in the deck, must be stored.

4. Data Storage and Display
- The system must maintain a record of all cards held by the

winning player after each round.

- Player data, including names and quantities of cards won,
must be stored in an external file for persistence.

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 38 | 39

REQUIREMENT SPECIFICATIONS
FOR LUISE’S CARD GAME

- The system must retrieve and display the top 5 players
with the highest quantity of cards from the external file for
leaderboard display.

5.Data Portability:
- The game data should be stored in a format that allows for

easy transfer and access across different environments.
INTERFACE
REQUIREMENTS

The user interface should be intuitive and easy to navigate for
players.

COMPATIBILITY
REQUIREMENTS

The game should be compatible with common operating systems
and devices

PERFORMANCE
REQUIREMENTS:

The game should respond quickly to player actions and provide a
seamless gaming experience.

SECURITY
REQUIREMENTS

- Only authorized players can access and play the game.
- Player data stored in external files will be encrypted for security
purposes.

TESTING
REQUIREMENTS

Functional Testing:
- Verify that the game rules are correctly implemented.
- Test the card comparison logic to ensure that the correct

player wins based on color and number.
- Confirm that the deck shuffling and card distribution are

working as expected.
- Test the winner data management system to ensure it

accurately records and stores the winning player's
information.

Authorization Testing:
- Verify that only authorized players can access and play

the game.

- Test the authentication process to ensure that
unauthorized users are blocked from playing.

Data Management Testing:
- Test the storage and retrieval of player information in the

external file.
- Verify that the file is updated correctly after each round to

reflect the winning player's cards.
Leaderboard Display Testing:

- Confirm that the leaderboard displays the correct
information for the top 5 players with the highest quantity
of cards.

- Test the sorting mechanism to ensure that players are
ranked accurately based on their card quantity.

Integration Testing:
- Verify that all components of the game, including

gameplay, data management, and leaderboard display,
work together seamlessly.

- Test interactions between different modules to ensure
they communicate and function properly.

Usability Testing:

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

SvitlanaRadchenko@exe-coll.ac.uk page 39 | 39

REQUIREMENT SPECIFICATIONS
FOR LUISE’S CARD GAME

- Gather feedback from users to assess the game's ease of
use and overall user experience.

- Test the game interface for clarity, responsiveness, and
intuitiveness.

Performance Testing:
- Evaluate the game's performance under various

conditions, such as different numbers of players or large
quantities of cards.

- Test for any potential bottlenecks or issues that may affect
gameplay.

By documenting and analysing these requirements in detail, requirement
specifications provide a clear roadmap for software development teams to design,
implement, test, and deliver a high-quality software application that meets stakeholder
expectations.

	U3_1.1 The key features of object-oriented programming.
	SHORT DESCRIPTION OF KEY FEATURES OF OOP
	EXAMPLE OF KEY FEATURES (PYTHON)
	U3_1.2 Explain the importance of encapsulation, inheritance and polymorphism in object-oriented programming.
	U3_2.1 Demonstrate the use of object-oriented tools and techniques.
	U3_3.1 Design an object-oriented program
	U3_3.2 Develop an object-oriented program.
	U3_4.1 Test an object oriented program.
	Picture1 “Evidence1 for TC_3_ dec30”
	Picture2 Evidence for TC_4_UniqueCard
	Picture3_” Evidence for TC_5_shuffled”
	Picture4_”Evidence for TC_5_AfterShuffle”
	Picture5 “Evidence for TC_6_SameColor”
	Picture6 “Evidence for TC_7_DiffColor”
	Picture7 “Evidence for TC_8_ WinList”
	Picture8 “Evidence for TC_12_ TopWin”

	U3_4.2 Document appropriate action to correct errors.
	U3_4.3 Create technical documentation for the support and maintenance of the program.
	Installation and usage instructions
	Requirement specifications for LUISE’S CARD GAME

