L3 Software Development Diploma Cgateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming a

OBJECT-ORIENTED PROGRAMMING REPORT

Table of contents

U3_1.1 The key features of object-oriented programming.ccccvvveeieiiiiecciiiee e 2
SHORT DESCRIPTION OF KEY FEATURES OF OOP......ctiiiiiiiiiieeee ettt re e neeeee e 2
EXAMPLE OF KEY FEATURES (PYTHON)....eiicttiiitii ettt ettt ettt e stee et e eseteeseae s sntessteesseeensessaeesneeesnseesnsessnnes 3
U3_1.2 Explain the importance of encapsulation, inheritance and polymorphism in object-oriented
(o1 o =411 0011 011 o TS0 PP P PP 10
U3 2.1 Demonstrate the use of object-oriented tools and techniques........ccccoeecciieeeiiicccciieeee e, 11
U3_3.1 Design an object-oriented Programceeecciieeiiiieeereiieessieeeessire e e sstreessereessssreeessseessnsseeees 13
U3_3.2 Develop an object-oriented Program.ccccueeeiicieeeecieeesiieeeeereeessteeessereeesssreesssseeesnssnees 18
U3 4.1 Test an object-0riented Program.........cociiieeiiiie ettt e e etae e e re e e e ba e e e e areeeeeasaee s 21
Picturel “Evidencel for TC_ 3 deC30 ...ttt ettt e e e eetrre e e e e e e anaae e e e e e e eennrraaeeaaean 23
Picture2 Evidence for TC_4_UnIiQUECAIdcccccieiiiiieeeiriiee e ceiee e esiee e siiee s satee e s svaee e snbee s e sveeessnes 24
Picture3_” Evidence for TC_5_shuffled”coocieiiiiiiie e e 25
Pictured "Evidence for TC_5 AfterShuffle”oo i 25
Picture5 “Evidence for TC_6_SameColor”ttt ecrree e e e e errrre e e e e e s e eanrraaeeaa s 26
Picture6 “Evidence for TC_7_DiffColOr” ...ttt et e e e 26
Picture7 “Evidence for TC_8 WINLISt”cceeiiiiiiie ettt e e te e e et e e e ree e e e 27
Picture8 “Evidence for TC_12 TOPWINottt e et e et e e e e ate e e e abe e e e ebaee e ennes 27
U3_4.2 Document appropriate action tO COIMECT EITOrS. ..ottt e e e e e 29
U3_4.3 Create technical documentation for the support and maintenance of the program. 31
Installation and USAZE INSTIUCTIONS ...cc.viiieciieecceee ettt e e et e e e et e e e tae e e ear e e e e asaeeeensseeesnsaeeas 31
Requirement specifications for LUISE’'S CARD GAMEcooiiiiiiiiiiiiee et eecittte e e e e e eeaane e e e e e e eanes 34

SvitlanaRadchenko@exe-coll.ac.uk page 1 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

U3_1.1 The key features of object-oriented programming.

Object-oriented programming (OOP) is a programming paradigm that organises

code into objects, which are like real-world entities that have attributes (data) and
behaviors (functions).

By using these key features of object-oriented programming, developers can

create modular, reusable, and organized code that mimics real-world entities and
relationships, making it easier to manage and maintain complex software systems

Here are the key features of OOP explained below.

Encapsulation

Abstraction @~ ————— - Polymorphism

Method
overriding

Inheritance

Features of

Method

Objects oo PS overloading

Constructors
and destructors

Classes

SHORT DESCRIPTION OF KEY FEATURES OF OOP

CLASSES are like blueprints or templates for creating objects. They define the
attributes (data) and behaviors (functions) that objects of that class will have.

OBJECTS are instances of classes. They represent specific instances of the
class with their own unique data and behavior.

ENCAPSULATION is the idea of bundling data (attributes) and methods
(behaviors) together within a class. It helps in hiding the internal workings of an
object and only exposing necessary information.

INHERITANCE allows a new class (subclass) to inherit attributes and behaviors
from an existing class (superclass). This promotes code reusability and helps in
creating a hierarchy of classes.

POLYMORPHISM allows objects of different classes to be treated as objects of
a common superclass. This means that different objects can respond to the
same message (function call) in different ways.

METHOD OVERRIDING: In method overriding, a subclass can provide a
specific implementation for a method that is already defined in its superclass.
This allows the subclass to customize or extend the behavior of the inherited
method.

SvitlanaRadchenko@exe-coll.ac.uk page 2 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

e METHOD OVERLOADING: Method overloading enables a class to have
multiple methods with the same name but different parameters. This allows
developers to create methods that perform similar tasks but with different
inputs, making the code more flexible and easier to use.

e CONSTRUCTORS AND DESTRUCTORS: Constructors are special methods
used to initialize objects when they are created. They typically set initial values
for object attributes. Destructors, on the other hand, are used to clean up
resources and perform necessary actions before an object is destroyed or goes
out of scope.

EXAMPLE OF KEY FEATURES (PYTHON)
CLASSES and OBJECTS

Let's consider using built-in, primitive data structures as an option and alternative to
Classes. Primitive data structures - like numbers, strings, and lists - are designed to
represent straightforward pieces of information, such as the cost of an apple, the
name of a poem, or your favorite colors, respectively. But if we want to represent
something more complex, we have to use Classes.

CLASSES & OBJECTS

description example of code

Primitive data structures One way to do this is to represent each employee as a list

For example, we might want to Python

track employees in an

Organization. We need to store kirk = ["James Kirk", 34, "Captain”, 2265]

Some baSIC Informatlon about 5pDCk = [.ISjL-'Cl“:“, 35_, "Science ':'T:T:i-:':_""'“, 2254]

each employee1 such as their mccoy = ["Leonard McCoy™, "Chief Medical Officer”, 2266]

name, age, position, and the
year they started working

Issues with Primitive data In the mccoy list above, the age is missing,

structures so mccoy[1] will return "Chief Medical Officer” instead
From the previous example, of Dr. McCoy'’s age.

there are several issues with

this approach: So, a great way to make this type of code more

- make larger code files more | manageable and more maintainable is to use classes.
difficult to manage.

- canintroduce errors if
employees don’t have the
same number of elements in
their respective lists.

SvitlanaRadchenko@exe-coll.ac.uk page 3 | 39

https://realpython.com/python-list/

L3 Software Development Diploma

Unit number and Assignment title: Unit 3: Object-Oriented Programming

sgatewav

Define a class by using
the «class» keyword followed
by a name and a colon. Then we
use .__init_ ()to declare
which attributes each instance
of the class should have.

We define a class
Employee with attributes for
name, age, position, and start
year. The __init_ method is
used to initialize these attributes
when an object of the class is
created. We also define a
method display_info to print out
the information about an
employee.

An object is called an instance
of a class. Suppose Employee
is a class then we can create
objects

like employeel, employee2, etc
from the class.

So, | create two instances of the
Employee class

(employeel and employee?2)
and display their information
using the display_info method.

class Employee:
def __init
start_year):
self.pame = name
self.age = age
self.position = position
self.start_year = start_year

(self, name, age, position,

def display_info(self):
print(f"Name: {self.name}")
print(f"Age: {self.age}")
print(f"Position: {self.position}")
print(f"Start Year: {self.start_year}")

Create instances of Employee class

employeel = Employee("John Doe", 38, "Software
Engineer", 2015)
employee2 = Employee("Jane Smith", 25, "Data

Analyst", 2018)

Display information about employees
print("Employee 1:")
employeel.display_info()

print("\nEmployee 2:")
employee2.display_info()

#out put

Employee 1:

Mame: John Doe

Age: 3@

Position: Software Engineer
Start Year: 2815

Employee 2:

Mame: Jane Smith

Age: 25

Position: Data Analyst
Start Year: 2818

Using classes in Python helps organize related data and functionality into a
single unit, making the code more manageable and maintainable. It also allows for
code reusability and abstraction, leading to cleaner and more structured code.

SvitlanaRadchenko@exe-coll.ac.uk

page 4 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming ‘

INHERITANCE

The process of inheriting the properties of the parent class into a child
class is called inheritance. Using inheritance in this way allows us to reuse code from

the base class and extend it in the derived class, providing a more structured and
organized approach to managing employee data.

The example below will demonstrate how to use inheritance in Python. The
case is Create a base class Person that stores common information about a person,
and a derived class Employee that inherits from Person and includes additional
information specific to an employee

INHERITANCE

description example of code

In this code, we define a base class
Person with attributes for name and class Person:

age. The Employee class is derived def __init__(self, name, age):
from the Person class and adds self.name = name

attributes for position and start year. SleEn =

The _init__ method in the def display_info(self):
Employee class calls the print(f"Name: {self.name}")
__init__ method of the base class print(f"Age: {self.age}")

using super().

Also. override the class Employee(Person):
displ’ay info method in the def __init__(self, name, age, position,

. start_year):
_Employep class '[O include super().__init__(name, age)
information specific to an employee self.position = position
while still displaying the common self.start_year = start_year
information from the base class
def display_info(self):
super().display_info()
print(f"Position: {self.position}")
print(f"Start Year: {self.start_year}")

Create instances of Employee class
employeel = Employee("John Doe", 38, "Software
Engineer", 2815)

employee2 = Employee("Jane Smith", 25, "Data
Analyst", 2018)

Display information about employees
print("Employee 1:")
employeel.display_info()

print("\nEmployee 2:")
employee2.display_info()

SvitlanaRadchenko@exe-coll.ac.uk page 5 | 39

L3 Software Development Diploma Cgateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming a

#out put

Employee 1:

Mame: John Doe

Age: 30

Position: Software Engineer
Start Year: 2815

Employee Z:

Mame: Jans Smith

Age: 25

Position: Data Analyst
Start Year: 28183

ABSTRACTION

Abstraction in Python involves hiding the complex implementation details
of a class and only exposing the necessary information or functionality to the
outside world. This helps in simplifying the usage of the class and focuses on what the
class does rather than how it does it. In the context of tracking employees in an
organization, we can use abstraction to define a base class with abstract methods that
represent the common functionality every employee should have, without providing the
specific implementation. Subclasses can then inherit from this base class and provide
their own implementations for these abstract methods.

ENCAPSULATION

Encapsulation in Python involves bundling the data (attributes) and methods
(functions) that operate on the data within a class, and restricting access to the internal
data by using access modifiers such as public, private, and protected. This helps in
preventing external code from directly modifying the internal state of an object and
promotes data hiding and information hiding.

Let's demonstrate encapsulation in Python with an example of tracking
employees in an organization:

SvitlanaRadchenko@exe-coll.ac.uk page 6 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming ‘

ENCAPSULATION

description example of code

In this example, we define a class

Employee with attributes _name, | c1ass Employes: .
- def _init_ (self, name, age, position, start_year):

_age, _pOSitiOI’l, and __start_year. self. name = name # Protected attribute
The attributes _nhame, _age, and self. age = age # Protected attribute
P self. position = position # Protected attribute
EpOSItIOfIt] -al‘e Earked atf] protgcteld self. start_year = start_year # Private attribute
Yy pretixing em wi a single
underscore. The attribute def diﬁplf('ygimlcofsel?;)
. . print("Employee Information:"
_st.a-rt_y.ear.ls marked as private by print(f'Name: {self. name}")
prefixing it with double underscores. print(f"Age: {self._age}")

print(f"Position: {self. position}")
. . . rint(f"Start Year: {self._ start_year}”
We provide a method display_info to ’ ({ - -year}”)

display the employee information, def get_start_year(self):

and getter and setter methods return self. start year
get_start_year and def set_start_year(self, start_year):
set_start_year to access and modify if start_year > O:

self.__start_year = start_year
else:
print("Invalid start year. Please provide a valid

the private attribute __ start year.

When we try to directly access or | vear-")

mOdIfy the p”vate attribute # Create an instance of the Employee class
__start_year, Python raises an | employeel = Employee("John Dee", 3@, "Software Engineer”, 2015)

AttributeError. Instead, we use the . . ,
. # Display information about the employee
getter and setter methods to interact | eppioyeel.display info()

with the private attribute, ensuring
encapsulation and controlled access # Try t? access and modify private attribute directly (will
result in an error)

to the internal state of the object. # print(employeel. start year)
employeel. start_year = 2016

Access and modify private attribute using getter and setter
methods

print("YnUpdating start year...")
employeel.set_start_year(2816)

print(f"Hew Start Year: {employeel.get_start_year()}")

#output

Employee Information:

Mame: John Doe

Age: 39

Position: Software Engineer
Start Year: 2015

Updating start year...
[lew Start Year: 2016

SvitlanaRadchenko@exe-coll.ac.uk page 7 | 39

L3 Software Development Diploma Cgateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

POLYMORPHISM

Polymorphism is another important concept of object-oriented programming. It
simply means more than one form.

That is, the same entity (method or operator or object) can perform different operations
in different scenarios. The built-in function len() calculates the length of an object
depending upon its type. If an object is a string (x=«banana»), it returns the count of
characters (x=6), and If an object is a list (a), it returns the count of items in a list(a=3).

+

Folymorphism
Capable of working with data of “many forms”

¥ = 'banana' # string 6

a = ["apple", "banana”, "cherry"] #list of 3
b = {"name" : "Jchn", "age" : 36} #
print({len(x))

print(len(a))

print(len(b))

In the context of tracking employees in an organization, we can create a
superclass called Employee that contains common attributes and methods shared by
all employees. Then, we can create subclasses for different types of employees, such
as Manager, Engineer, and Intern, which inherit from the Employee superclass.

Here's an example to illustrate polymorphism in Python for tracking employees. By using
polymorphism, we can treat instances of Manager, Engineer, and Intern as instances of the
Employee superclass. This allows us to call the display_info() method on any employee object,
regardless of its specific subclass, and get the relevant information displayed.

SvitlanaRadchenko@exe-coll.ac.uk page 8 | 39

https://pynative.com/python-lists/

L3 Software Development Diploma
Unit number and Assignment title:

ateway

qualificatior

39

Unit 3: Object-Oriented Programming

POLYMORPHISM

description

example of code

In this example, we define a
superclass Employee with
attributes name, age,
position, and start_year, as
well as a method
display_info() to print out
the information about an
employee. We then create
subclasses Manager,
Engineer, and Intern, each
with their own specific
implementation of the
__init__ method.

class Employee:
def __init__(self, name, age, position,
start_year):

self.name = name

self.age = age

self.position = position
self.start_year = start_year

def display_info(self):
print(£"{self.name} ({self.position}) - Age:

{self.age}, Started in {self.start_year}")

class Manager(Employee):
def __init__(self, name, age, start_year):
super().__init__(name, age, "Manager",
start_year)

class Engineer(Employee):
def __init__(self, name, age, start_year):
super().__init__(name, age, "Engineer",
start_year)

class Intern(Employee):
def __init__(self, name, age, start_year):
super().__init__(name, age, "Intern",
start_year)

Create instances of different types of employees
manager = Manager("Alice", 35, 2018)

engineer = Engineer("Bob", 28, 2015)
intern = Intern("Eve", 22, 2021)

Display information about each employee
manager.display_info()
engineer.display_info()
intern.display_info()

SvitlanaRadchenko@exe-coll.ac.uk

page 9 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

U3_1.2 Explain the importance of encapsulation, inheritance and polymorphism
in object-oriented programming.

Encapsulation

Helps in data hiding, reducing complexity, and providing a clear interface for
interacting with the class. It ensures that data is accessed and modified in a controlled
manner, enhancing security and maintainability.

e Security - protects an object from unauthorized access

o Simplicity - keeping classes separated and preventing them from tightly coupling
with each other.

e Aesthetics - Bundling data and methods within a class makes code more
readable and maintainable

Inheritance

Inheritance reduces code duplication by allowing derived classes to reuse the
properties and methods defined in the base class. Developers don't have to write the
same code multiple times in different classes when a common functionality exists.

This mechanism fosters code reusability, allowing the derived class to leverage the
attributes and methods of the base class. It establishes a hierarchical relationship,
promoting a structured and organized codebase. Inheritance enables the creation of
specialized classes that build upon the functionality of more generalized ones,
enhancing modularity and easing maintenance.

Inheritance is the process of extending the existing code functionality for removing
the repetitive coding work, as a result, it leads to reduced development time.

Polymorphism

Polymorphism means “one name many forms” that allow developers to provide
multiple elements depending on the object type. This will permit developers to redefine
the whole work and define how it can be done by updating the parts in which it was
previously performed. Polymorphism terms are known as overriding and overloading.

Method Overriding enhances code extensibility, allowing developers to tailor the
functionality of inherited methods to suit the specific requirements of individual
subclasses. This dynamic behaviour during runtime contributes to the power and
versatility of OOPs.

Overloaded methods provide a cleaner, more readable codebase, as
developers can invoke the same method name with different argument sets.

This feature streamlines the development process, making it easier to work with
diverse data types or handle various scenarios without cluttering the code with multiple
method names. Method overloading is a critical element in OOPs, contributing to code
versatility and maintainability.

SvitlanaRadchenko@exe-coll.ac.uk page 10 | 39

L3 Software Development Diploma 3@ ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

U3_2.1 Demonstrate the use of object-oriented tools and
techniques.
During my study of Python, | developed the «Louise Game». I'd like to show

below examples of the use of these key features (also there are some of examples in
the previous paragraph 1.1 «The key features of object-oriented programming.

Below introduced a few pieces of code from the project «Luisa game».

In the example | have created a PlayerDatabase class with method
read_players_from_file to the PlayerDatabase class that reads player information from
a file and adds it to the database. The file is assumed to have player information
separated by a comma.

self.players = {}

r add_player(self, name, password):
self.players[name] = password

I read_players_from_file(self, filename):
with open(filename, 'r') as file:
for line in file:
name, password = line.strip().split(’,")
self.add_player(name, password)

def check_player(self, name, password):
Lf_name in
return True

return False

= PlayerDatabase()
.read_players_from_file(‘NamesandPasswords.txt"')

Functions in Python. | have used my functions in programming to bundle a set of
instructions | want to use repeatedly:

In a card desk | have got FullCardslist = [[Red#1','Red#2','Black#11',"Yellow#1.
With function pop(0) FullCardslist.pop(0). | create a variable colling Card, where Card =
Color#Namber - it is a string for example Red#1. With method split() I've got [Red','1]
(Card.split("#", 2)). As resalt | can receive color and number Color = print(Card[0]) ,
Namber = print(Card[1])

SvitlanaRadchenko@exe-coll.ac.uk page 11 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

StartNewGame():
hile len(FullCardslist) > 0:
print(“number of len",len(FullCardslist))
ColorCard_P1 = "
ColorCard_P2 = "

CardP11 = FullCardslist.pop(0)
CardP12 = FullCardslist.pop(0@)

ColorCard_P1 = RecognizeCard(CardP11,0)
ColorCard_P2 = RecognizeCard(CardP12,0)

NumberCard_P1 int(RecognizeCard(CardP11,1))
NumberCard_P2 int(RecognizeCard(CardP12,1))

if ColorCard_P1 == ColorCard_P2:

print(“Compare card's numbers”,ColorCard_P1,ColorCard_P2,NumberCard_P1,NumberCard_P2)
1T NumberCard_P1 > NumberCard_P2:

PlayerListl.append(CardP11)

PlayerListl.append(CardP12)

PlayerList2.append(CardP11)
PlayerList2.append(CardP12)

def RecognizeCard(strCard,Ind):

1stCard = strCard.split("“#", 2)

Result = 1stCard[Ind]

"eturn Result

SvitlanaRadchenko@exe-coll.ac.uk page 12 | 39

L3 Software Development Diploma Cgateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

U3_3.1 Design an object-oriented program

LOUISE’S GAME.

Louise is creating a card game for two players.

Basic parameters Additional information
Number of players 5 Only authorised players are allowed to play the
game.
Number cards 30 The 30 cards are shuffled and stored in the deck.
Each card has one colour (red, black or yellow).
Each card unique Each card has a number (1, 2, 3, 4,5, 6, 7, 8, 9,
10) for each colour.
Red RED beat BLACK
Cards colour's Black BLACK beat YELLOW
Yellow YELLOW beat RED
How to play
v Player 1 takes the top card from the deck.
v Player 2 takes the next card from the deck.
v If both players have a card of the same colour, the player with the highest
number wins.
v If both players have cards with different colours, the winning colour is shown
in the table.
v' The winner of each round keeps both cards.
v" The players keep playing until there are no cards left in the deck.
Additional requirements
v’ Lists all of the cards held by the winning player.
v’ Stores the name and quantity of cards of the winning player in an
external file.
v Displays the name and quantity of cards of the 5 players with the highest

guantity of cards from the external file.

SvitlanaRadchenko@exe-coll.ac.uk page 13 | 39

L3 Software Development Diploma 3@ ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

|

1-2 Allows two players to enter their details, which are then
authenticated, to ensure that they are authorised players.

|

3. Shuffles the 30 cards in the deck.

Authorization

Round by round 4. Allows each player to take a card from the top of the deck.
comparison Play continues until there are no cards left in the deck.

5. Calculates the winner and allocates both cards to the winner.

6. Lists all of the cards held by the winning player.

Determine and 7. Stores the name and quantity of cards of the winning player in

show who won an external file.

8. Displays the name and quantity of cards of the 5 players with
l the highest quantity of cards from the external file.

A graphical representation of an algorithm was done using flowchart tools
(Lucidchart and MsVisio). A flowchart illustrates the steps of a program graphically.

The following design was created according to the given conditions.

The whole game is divided into three large blocks, in each of which certain steps
meet the requirements.

Game’s design consists of three pictures/ flowcharts.

The first picture below shows all the main events of the game.

The next picture shows details for the second block «Round by round
comparison», finally third picture — explains the block «Determine and show who won»

The authorization part in the current version is simple, so it is not presented
separately in the document. however, for the future, | would like to add the ability to join
new players, as well as check whether such a player has already registered, as well as
check the reliability (length) of the password

SvitlanaRadchenko@exe-coll.ac.uk page 14 | 39

L3 Software Development Diploma Sgat'eway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

o
|

"Type your Login and
password"
/ User Login /
/ User password /

!

Authorization

"Sorry! "Hello! You are in !
Incorrect password / login"

|
a -

l

"Lets get start the Game "

NO

"Sorry, but you cant go on
alone"

v

Round by round Wait for ';he
comparison oppo:{\%r}; ora

“Any cards lefi
in the deck?

No
v

Determine and
show who won

39

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

/‘Lets get start the Garne'/

¥

Shuffles list of cards

YES

card is taken from the top

I

Read and save resalt for
Player 1
(NumberCard1, ColorC1)

:

card is taken from the top

:

Read and save resalt for
Player 2
(NumberCard2, ColorC2)

)

compare colors of cards
(ColorCard1,ColorCard2)

S NumberCard2

Any cards left
inthe deck?

ateway

qualifications

39

]
Determine and
show who won

sucsesfull combination for Playerl
GolorCard_P1 = "Red” & ColorCard_P2 = "Black"

or
ColorCand_P1 = "Yellow" & ColorCard_P2 = "Red”

or
L ColorCard_P1 = "Black” & ColorCard_P2 = ™Yellow”

Card Card Winner
Red Black Rea
Yellow Red Yellow

| Black Yellow

“Ts NumberCard1 >™

Add two cards for
Player2 into
list2 of cards

< Isthe same color?

Black

YES

Add two cards ™ successtul
for Playerl into l——YES combination
list1 of cards

NO

Find out the winner
according to the table
(ColorCard1,ColorCard2)

_ for Playerl?

SvitlanaRadchenko@exe-coll.ac.uk

NO

page 16 | 39

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

Any cards
left in the deck?

Determine the winner
(Who keeps more cards)

NO

Is Player's. 1 Listl
| VES longer then lst2? NO |

S gateway
qualifications

save the result into an external file

for Playerl for Player2

save the result into an external file

1]
!

Update top winners (5)
"Would you like t© know
more details about this game?"
“If YES - print 1, NO print 0"
/ Answer from Player /
YES.

, /}\\ s
N X

o]

Congretuistions, Name of Flayart.
‘You are the winner!
BLORE

Hemed hoa carda in dack
NemaZ hoe ... cards in dack

Thia ia result of winner (dock coneset of such carde:
card
card
card

short answer like:
PlayerMamel, "beat”, PlayerName2 |
"SCOMR IS ...

Show result of winner from file
«GamesResults

T]

-

“Would you like to know TOP-5
players?

NO YES
¥

Open (Read) file -TopWinners-

@

SvitlanaRadchenko@exe-coll.ac.uk

page 17 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

U3_3.2 Develop an object-oriented program.
Using Python programming language | developed a working prototype of
Louise’s game.

Below you can see parts of the code that were executed using Replit, also
there are explanations for how initially designed the algorithm and then later tested
the solution (U3_4.1).

f StartNewGame(}:
Lle len{FullCardslist) = @:
print{"number of len",len{FullCardslist))
ColorCard_P1
ColerCard_P2 = ""

CardP1l = FullCardslist.pop{@)}
CardP12 FullCardslist.pop{@)

ColerCard_P1 = RecognizeCard({CardP11,0)
ColerCard_P2 = RecognizeCard{CardP12,8)

NumberCard_P1 = int{RecognizeCard(CardP11,1}}
NumberCard_P2 int{RecognizeCard(CardP12,1))

if ColorCard_P1 == ColorCard_P2:

print(“Compare card's numbers",ColorCard_P1,ColorCard_P2,NumberCard_P1,NumberCard_P2)
if MumberCard_P1 = NumberCard_P2:

PlayerListl.append{CardP11)
PlayerList1.append({CardP12)

PlayerList2.append(CardP11}
PlayerlList2.append({CardP12)

if (ColorCard_P1 "Red" and ColorCard_P2 k") or (ColorCard_P1 == "Yellow" _and
ColorCard_P2 = {ColorCard_P1 == "= 1
and ColorCard P2

print{ "suce combination for Playerl ", ColorCard_P1, ColorCard P2)

PlayerListl.append({CardP11)
PlayerList1.append(CardP12)

print{ "su ssful combination for Player? ", ColorCard_P1, ColorCard_P2)
PlayerList2.append(CardP11}
PlayerList2.append({CardP12)

print{" Jinner in game ")

Output:

SvitlanaRadchenko@exe-coll.ac.uk page 18 | 39

https://replit.com/@svitlanaradchen/Unit3RedBlackGame

L3 Software Development Diploma 3@ ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

type your Name herelana

type your password herel23

Helle and welcome back, Lana!

Sorry, but you can't go on alone

You are the second player. For successful login

type your Name hereSue

type your password herel23

Let's get start the Game

Lana against Sue

number of len 38

Compare card's numbers Black Black 3 7

number of len 28

successful combination for Player2 Black Red

number of len 26

successful combination for Playerl Yellow Red
number of len 24

successful combination for Playerl Yellow Red
number of len 22

successful combination for Player? Red Yellow
number of len 28

successful combination for Player? Black Red

number of len 18

successful combination for Player? Red Yellow
number of len 16

Compare card's numbers Black Black 8 6

number of len 14

successful combination for Player? Yellow Black
number of len 12

successful combination for Playerl Yellow Red
number of len 18

successful combination for Playerl Red Black

number of len 8

Compare card's numbers Yellow Yellow 8 2

number of len 6

successful combination for Player2 Red Yellow
number of len 4

Compare card's numbers Black Black 4 2

number of len 2

successful combination for Player2 Red Yellow
———eeeeeeeeeee—————————=h0 15 winner in game
["Yellow®5\wn', 'Red®7\n", "Yellow#3%n', 'Red#B\n', 'Black#B\n', 'Black®#6\n"', 'Yellow#6\n', 'Red#2\n"', 'Red#18\n", 'Black#l\
n', 'Yellow#B\n', "Yellow#2\n', 'Black®#\n', 'Black#2\n'] ['Black#3\n"', "Black#7\n"', 'Black#l@\n', 'Red#3\n', 'Red#l\n', 'Y
ellow#7\n", 'Black#5\n', 'Red#6\n', "Red#5\n', 'Yellow#1@\n', 'Yellow#i\n', 'Black®9\n', 'Red®\n’, 'Yellow#d\n', 'Red#I\n’
» Yellow#3iwn']

SaveFile

Would you like to know more details about this game?
If YES - print 1, NO print 81

1

Congratulations, Sue!. You are the winner!
SCORE

Sue has 16 cards in dack

Lana has 14 cards in dack

This is result of winner (deck consist of such cards:)
Black#3

Black#7
Black#1@
Red#3
Red#l

SvitlanaRadchenko@exe-coll.ac.uk page 19 | 39

L3 Software Development Diploma 3@ ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

jinner in game "}
print{PlayerListl,PlayerList2)
if len({PlayerListl)} > len{PlayerList2}:

print(*SaveFile")
SaveEx nalFile{PlayerNamel,PlayerListl,PlayerName2,PlayerList2)
update_top_winners{PlayerNamel,PlayerlListl}

print(e")
SaveExternalFile(PlayerName2 ,PlayerList2 ,PlayerNamel, PlayerlListl)
update_top_winners(PlayerName2 ,Playerlist2}

print{ “Would you 1i to know more details about this

AnswerDetails = input("If - print 1, NO print @")
LT int(AnswerDetails)

print{AnswerDetails)
GamesResult = open{ "GamesResult.tx

print(GamesResult.read())

print{ AnswerDetails)

print (PlayerName2, "beat", PlayerNamel , is ", len(PlayerList2),® : “, len{PlayerListl))

¢ TOP-5 pla
- print 1, print @")
if AnswerTop
TopWinners = open{"TopWinners.txt", “r")
print{ TopWinners.read{))

print({ "Game r*)
answerReStart input{ "Would you like to y W ? If yes - print 1, alse print 8"}
LT answerReStart = =

tartNewGame(}

nt{"The END")

Would you like to know more detaills about this game?

If YES - print 1, NO print B8

@

Sue beat Lana score is 16 :

Would you like to know TOP-5 players?

If yes — print 1, else print 08

Game over

Would you like to play new game? IT yes - primt 1, alse print B8
The END

SvitlanaRadchenko@exe-coll.ac.uk page 20 | 39

L3 Software Development Diploma Sgateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

U3 4.1 Test an object oriented program.

Manual testing is a type of software testing where testers manually execute test
cases without using any automation tools. Manual testing involves human intervention
to identify defects in the software application.

Date

of Component to be Type of test to be Prerequisites and
test tested carried out dependencies
Login with Username and \White box testing Password should belong to
Password Analyse the code Username which will be used

for entering to the game

Login with Username and Black box If Username is not in the list
Password Alpha Testing show the warning “You must be
registered first”
Game just for 2 gamers \White box testing If there are only one player,
Black box then game should not start
Alpha Testing \Waiting time is 2 min and then
finish the game if there only 1
gamer
Card game \White box testing Make sure that the color and
number belong to the same
card

Here are some appropriate test data for the card game which cover various
aspects of this game, including authorization, deck initialization, game play mechanics,
and data storage/display requirements. These test cases match with part of the DATA
REQUIREMENTS from the Requirement specification

ID TEST CASES (TC) EVIDENCE OF
TESTING

PLAYER AUTHORIZATION:

TC_1 | Verify that an unauthorized player cannot access | TestloginU3_4.2
the game.

TC_2 | Verify that an authorized player can access the Test log in U3_4.2
game.

DECK INITIALIZATION:

TC_3 | Verify that the deck contains 30 unigue cards. Picturel Evidence for
- Steps Lde(:kso
1. Check is there txt file with card as require
2. Include in code part with displaying how is process of
shuffle going.
3. Run the game.
4. After proper testing this part of code can be commented

TC_4 | Verify that each card has a unique color and Plturez Evidence for
number. R
Steps Not necessary as

1. Open the CardDeck.txt before run the game CardDeck.txt created

SvitlanaRadchenko@exe-coll.ac.uk page 21 | 39

L3 Software Development Diploma

Unit number and Assignment title: Unit 3: Object-Oriented Programming

Sgateway

ID TEST CASES (TC) EVIDENCE OF
TESTING
2. Make sure that deck consist of red, yellow and black according to the rule and
cards with numbers from 1 to 10 should be consist of red,
yellow and blac cards.
TC 5 | Verify that the deck is shuffled and stored in a bicture3
icture
random order. Steps “Evidence for TC 5 shuffled”
Option 1 (just wi_te boxing test) _ _ Pictured
1. Check just code — make sure that code include import of Evidence for
_ ran_dom a_nd method shuffl_e. TC 5 AfterShuffle”
Option 2 (mix of wite and black boxing test)
Check is there txt file with card as require
2. Include in code part with displaying how is process of
shuffle going.
3. Run the game.
4. After proper testing this part of code can be commented
GAMEPLAY MECHANICS
TC_6 | Verify the game determines the winner correctly PiTCéUFSSSEvideng for
when both players have cards of the same color | «'~—>->ametoor
with different numbers.
1. Include in the code part with displaying how is process
going.
2. Check manually with the game rule
TC_7 | Verify the game determines the winning color ﬂg”;e%.f'?éiﬂe“fe for
correctly when players have cards of different = o00r
colors.
1. Include in the code part with displaying how is process
going.
2. Check manually with the game rule
TC_8 | Verify that the winning player keeps both cards Picture7 o
after each round Evidence for TC 8 WinList
1. Include in the code part with displaying how is process
going after each round
2. Check manually the external file “GamesResult” and the
explanation from concole
TC_9 | Verify that the game ends when there are no The same picture as for TC 8

cards left in the deck.

DATA STORAGE AND DISPLAY

TC_10

Verify that the system lists all the cards held by
the winning player after each round.

The same picture as for TC 8

TC 11

Verify that the system stores the name and
guantity of cards of the winning player in an
external file.

The same picture as for TC 8

TC 12

Verify that the system displays the name and
guantity of cards held by the top 5 players with the
highest quantity of cards from the external file.

Picture8
“Evidence for TC_12_TopWin”

SvitlanaRadchenko@exe-coll.ac.uk

page 22 | 39

_Evidence_for#_Picture4_
Evidence_for_TC_5_AfterSh#_Picture5_
Evidence_for_TC_5_AfterSh#_Picture5_
Evidence_for#_Picture6_
Evidence_for#_Picture7_
Evidence_for#_Picture7_
Evidence_for#_Picture7_
Evidence_for#_Picture7_

L3 Software Development Diploma 3@ ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

ID TEST CASES (TC) EVIDENCE OF
TESTING

Picturel “Evidencel for TC_3_ dec30”

® Unit3_RedBlackGame [CPU/RAM LIMITED

main.py NamesandPasswords.ixt samesResult.b CardDeck.ba

Red#1
Red#2
Red#3
Red#4
Red#5
Red#6
Red#7
Red#8
Red#9
Red#1@
Black#1
Black#2
Black#3
Black#4
Black#5
Black#6
Black#7
Black#8
Black#9
Black#1@
Yellow#l
Yellow#2
Yellow#3
Yellow#d
Yellow#5
Yellow#6
Yellow#7
Yellow#8
Yellow#9

~ Yellow#10
C MODEL

f = open('CardDeck.txt', 'r')
Fullcardslist = f.readlines()

print("
print{FullcCardslist)
random.shuffle(FullCardslist)
print(" After shuffle / full shuffle deck:")
for x in FullCardslist:
print(x,end="")

SvitlanaRadchenko@exe-coll.ac.uk page 23 | 39

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

Picture2 Evidence for TC_4_UniqueCard

kAI 16mo

['Red#1\n', 'Red#2\n', 'Red#3\n', 'Red#4\n', 'Red#5\n', 'Red#6\n’', 'Red#7\n', 'Red#B\n’,
'Red#9\n', 'Red#10\n', 'Black#1\n', 'Black#2\n', 'Black#3\n', 'Black#4\n', 'Black#5\n’,
'Black#6\n", 'Black#7\n', 'Black#8\n', 'Black#9\n', 'Black#10\n', 'Yellow#i\n', 'Yellow

#2\n', 'Yellow#3\n', 'Yellow#d\n', 'Yellow#5\n', 'Yellow#6\n', 'Yellow#7\n', 'Yellow#8\n

', 'Yellow#9\n', 'Yellow#10\n']

---After shuffle ;7 full shuffle deck:

Black#10
Red#3
Yellow#3
Black#3
Red#7
Red#2
Yellow#8
Black#2
Black#5
Red#6
Yellow#9
Red#10
Black#7
Black#6
Yellow#10
Black#9
Yellow#5
Yellow#4
Black#8
Red#4
Yellow#7
Red#5
Black#1
Yellow#6

Hello! For successful login
type your Mame here[]

Red#1
Red#2
Red#3
Red#4
Red#5
Red#6
Red#7
Red#8
Red#9
Red#10
Black#1
Black#2
Black#3
Black#4
Black#5
Black#6
Black#7
Black#8
Black#9
Black#10
Yellow#l
Yellow#2
Yellow#3
Yellow#4
Yellow#5
Yellow#6
Yellow#7
Yellow#8
Yellow#9
Yellow#10

SvitlanaRadchenko@exe-coll.ac.uk

sgatewav

page 24 | 39

L3 Software Development Diploma 3@ ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

Picture3_" Evidence for TC_5_shuffled”

main.py x NamesandPa: 5 GamesResult.txt CardDeck.txt TopWini
main.py

~t random

FullCardslist = []
PlayerListl = []
PlayerList2 [J
PlayerNamel str{"")
PlayerName2 = str("")
answerReStart int(1)
AnswerDetails int(0)
NumberOfPlayer = int(0)

f = open('CardDeck.txt', 'r")
FullCardslist = f.readlines()

print{FullCardslist)
random. shuffle(FullCardslist)
After shuffle 7/ full shuffle deck:")
or x in FullCardslist:
print(x,end="")

['Red#1\n', 'Red#2\n', 'Red#3\n', 'Red#4\n', 'Red#5\n', 'Red#6\n', 'Red#7\n', 'Red#8\n', 'Red#9\n', 'Red#l
@\n", ‘Black#1\n', 'Black#2\n', 'Black#3\n", 'Black#d\n', 'Black#5\n', 'Black#6\n", 'Black#/\n', 'Black#8\
n', 'Black#3\n', 'Black#10\n', ‘Yellow#i\n', 'Yellow#2\n', ‘Yellow#3\n', 'Yellow#d\n', ‘Yellow#5\n', 'Yell
ow#6\n", 'Yellow#7\n', ‘Yellow#8\n', 'Yellow#9\n', "Yellow#18\n']

———————————————————— After shuffle / full shuffle deck:

Red#1

Yellow#3

Red#3

Hello! For successful login

SvitlanaRadchenko@exe-coll.ac.uk page 25 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

Picture5 “Evidence for TC_6_SameColor”

Let's get start the Game

Sveta agalnst Lana

number of len 3@

successful combination for Player2 Red Yellow
number of len 28

successful combination for Playerl Red Black
number of len 26

successful combination for Playerl Red Black
number of len 24

successful combination for Playerl Black Yellow
number of len 22

successful combination for Playerl Yellow Red
number of len 20

successful combination for Player2 Black Red
number of len 18

successful combination for Playerl Red Black
number of len 16

successful combination for Playerl Black Yellow
number of len 14

successful combination for Playerl Black Yellow
number of len 12

Compare card's numbers Red Red 6 2

number of len 1@

successful combination for Playerl Red Black
number of len 8

successful combination for Playerl Yellow Red
number of len &

successful combination for Player2 Yellow Black
number of len 4

Compare card's numbers Yellow Yellow 2 4

number of len 2

successful combination for Playerl Black Yellow

Picture6 “Evidence for TC_7_DiffColor” -
o o | [B % QB8 &

Run Pexunel | Dokycuposka mepcueroe Mo Mo OroBpaxenne = Macwrab OkHo Makpocer CeoiicTea
> [CTBO YTEHWA BEPTMKANW | FOPW3OHTANK > > > -
type your password here123456 pea i P
Let's get start the Game VIMMEP CHEHBIR P et MepemeLteHHe MEXAY CTPAHNLA... Makpoce SharePoint = ™
Sveta against Lana . -
L Sl B o0 o1 B.20 3.0 A5 0B 71 Be1 9. ‘1C‘|-1lg‘11-|-l]-|-14‘\‘15-\
number of len 38 o

successful combination for Playerz‘ Red Yellow . R .
nunber of len 28 — U3_3.1 Design an object-oriented program
successful combination for Playerl Red Black —

number of len 26

successful combination for Playerl Red Black]

number of len 24 LOUISE’S GAME.
successful combination for Playerl Black Yellow
number of len 22

successful combination for Playerl Yellow Red
number of len 20

successful combination for Player2 Black Red

Louise is creating a card game for two players.

Basic parameters Additional information

number of len 18
successful combination for Playerl Red Black
number of len 16 .

successful combination for Playeri Black Yellow
Tt 1 S Number of players 2 ;);geauthomsed players are allowed to play the

successful combination for Playerl Black Yellow
number of len 12

Compare card's numbers Red Red 6 2 B
number of len 18 Number cards 30 The 30 cards are shuffled and stored in the deck

successful combination for Playerl Red Black

number of len 8

successful combination for Playerl Yellow Red
——

Each card has one colour (red, black or yellow)

number of len § Each card unique Each card has a number (1, 2, 3,4, 5,6,7, 8, 9,
successful combination for Player2 Yellow Black 10) for each colour.

Compare.card"s nusbers vellow Yellow 2 4 Red RED beat BLACK *

ompare car ‘s numbers Yellow Yellow

number of len 2 Cards colour's Black BLACK beat YELLOW

successful combination for Playerl Black Yellow Yellow YELLOW beat RED _
e w5

SvitlanaRadchenko@exe-coll.ac.uk page 26 | 39

L3 Software Development Diploma 3@ ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

Picture7 “Evidence for TC_8_ WinList”

main.py NamesandPas ik GamesResult.txt » Cardl + 3_ Console 1
Run

type your password here456789
Piter has 28 cards in Let's get start the Game
Silva has 1@ cards in dack Silva against Piter
number of len 3@
successful combination for Playerz Black Red
This is result of winner (deck consist of such cards:} number of len 28
Black#6 Compare card’s numbers Yellow Yellow 4 2
Red#9 number of len 26

successful combination for Player2z Black Red
Black#9 number of len 24

Red#5 successful combination for Playerz Red Yellow
Red#6 number of len 22
Yellow#s Compare card's numbers Black Black 5 2

number of len 20
Black#4 successful combination for Player2 Black Red
Red#1 number of len 18
Red#8 successful combination for Player2 Red Yellow
number of len 16
sl successful combination for Playerl Black Yellow
Yellow#d number of len 14
Black#1 successful combination for Playerl Red Black
Red#4 number of len 12
Yellowss successful combination Playerl Red Black
number of len 18
Red#2 successful combination Player2z Yellow Black
Yellow#10 number of len 8
Yellow#l successful combination Player2 Red Yellow
Black#1e number of len 6
successful combination Player2 Red Yellow
Red#7 number of len 4
Yellow#6 successful combination Player2 Yellow Black
number of len 2
successful combination for Player2 Red Yellow
T) _— Who is winner in game
This is second player's result (deck consist of such cards:) ['Yellow#a\n', 'Yellow#2\n', 'Black#5\n', 'Black#2\n', 'Black#7\n",
Yellow#d \n', 'Black#9\n', 'Red#5\n', 'Red#6\n', 'Yellow#5\n', 'Black#4\n', '
Yellow#? n', "Red#2\n", 'Yellow#1@\n', ‘Yellow#i\n®, 'Black#18\n', 'Red#7\n’,
SaveFile
Black#5 Would you like to know more details about this game?
Black#2 If YES - print 1, NO print 81
Black#7 1
Yellows? Congratulations, Piter!. You are the winner!

SCORE
Red#3

Black#8 Piter has 28 cards in dack
Red#10
Black#3 Silva has 18 cards in dack

Picture8 “Evidence for TC_12_TopWin”
Congratulations, Sveta!. You are the winner!
SCORE

Sveta has 22 cards in dack

Lana has 8 cards in dack

Piter beat Sue score is 14 : 16
Would you like to know TOP-5 players?
If yes - print 1, else print 81
22-Sveta

22-Lana
22-Lana
18-5ue
18-5ue

SvitlanaRadchenko@exe-coll.ac.uk page 27 | 39

L3 Software Development Diploma
Unit number and Assignment title: Unit 3: Object-Oriented Programming

Il @ & unit3_RedBlackGame 5 CPU/RAM LIMITED

Cogateway

»

main. gy MamesandPasswords. b

) TopWinners_bd
~ Files

=

22-Sveta
CardDeck.bad

GamesResult. b
main.py

NamesandPasswords.bad

[TR TR S (Y (R

TopWinners. b

SvitlanaRadchenko@exe-coll.ac.uk

page 28 | 39

L3 Software Development Diploma

Unit number and Assignment title: Unit 3: Object-Oriented Programming

Would you like to know TOP-5 players?
If yes - print 1, else print 81

22-5veta

22-Lana

22-Lana
28-Piter
18-5ue

Game over

:Igateway

U3_4.2 Document appropriate action to correct errors.

Description of test Test datato be used Expected Pass / Fail Comments and intended
(if required) outcome actions
AUTHORIZATION TESTING
Normal data
Enter acceptable Lana Entry allowed |Pass lAccess was allowed but no
username for player one conformation message
Should be same kind of
Hello and welcome back, Lana!
Enter acceptable 123456 Entry allowed |Pass Explain why this prototype
password for player one required entering of second player
Like this
Sorry, but you can't go on alone
Enter acceptable Piter Entry allowed |Pass
username for player one
Enter acceptable 456789 Entry allowed |Fail Mistake is Invalid name for piter
password for player one or password 456789
Clarify what exactly wrong
For avoiding misunderstanding
Boundary inputs
Enter non-acceptable L Entry not Pass Cancellation message needed
username (one allowed
(Username 1 character)
Enter non-acceptable Usernametest123 [Entry not Pass
username (Username allowed. Explanations about security name
No longer then 12) land password
Username no longer than 12
characters and password longer
than 3 characters.
Enter non-acceptable Password Entry not Pass Explanations about security
pasword. Qwerty allowed name and password

Password and Qwerty insecurity

SvitlanaRadchenko@exe-coll.ac.uk

page 29 | 39

L3 Software Development Diploma

Cogateway

Unit number and Assignment title: Unit 3: Object-Oriented Programming a

Enter empty username. Entry not Pass Cancellation message needed
allowed with explanation what exactly is

Invalid inputs wrong / Invalid inputs

Enter username which Lana lana Entry not Pass Cancellation message needed

contains spaces allowed with explanation what exactly is

wrong

Invalid inputs

(Unacceptable A@@@! Entry not Pass Cancellation message needed

username not on the allowed

list)

Enter 7777 77777 Entry not Pass Cancellation message needed

username/password allowed

which contains spaces.

Erroneous inputs

IAcceptable username Theo Entry not Pass Cancellation message needed.

not on the list) allowed with offer to become registered

Maggie
Acceptable username Qw787 Entry not Pass Cancellation message needed.
not on the list) allowed with offer to become registered
Ere7879
DATA MANAGEMENT TESTING:
Verify that the file is updated correctly after each|Data from the [Pass Data from console was compared

round to reflect the winning player's cards.

console = data
from external
ffile

with an external file successfully

LEADERBOARD DISPLAY TESTING

Confirm that the leaderboard displays the top 5 players [Fail There is the same mistake with
correct information for the top 5 players with the with the recording after the game. It seems
highest quantity of cards. highest that the last winner was not added
quantity of to the list before sorting. As a
cards result — top5 without the latest
winner
Test the sorting mechanism to ensure that top 5 players |Pass
players are ranked accurately based on their ith the
card quantity. highest
quantity of
cards

SvitlanaRadchenko@exe-coll.ac.uk

page 30 | 39

L3 Software Development Diploma 3@ ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming

U3_4.3 Create technical documentation for the support and

maintenance of the program.

All types of technical documentation fall into three main categories: product
documentation, process documentation, and sales and marketing documents.

Product documents typically cover instructions and tutorials to help end-users
accomplish a task. They include guides, illustrations, and reference sheets that cover:
Information on the requirements or system specifications users need to run the
product efficiently. Installation and usage instructions.

Maintenance guide documentation — tells the user how to maintain the system
effectively and can include a definition of the software support environment, roles, and
responsibilities of the maintenance personnel.

TECHNICAL DOCUMENTATION FOR LUISE’S CARD GAME
Installation and usage instructions
1. SETTING UP — INSTALLING THE PROGRAM

The program was created by using REPLIT, an online IDLE.

<« &) 2& replit.com/@svitlanaradchen/Unit3RedBlackGame#main.py

T StartNewGame():

" ,len{FullCardslist)}

ColorCard |
ColorCard_P2

CardP11 = FullCardslist.pop(@)
CardP12 = FullCardslist.pop(@)

ColorCard P1 = RecognizeCard(CardP11,8)
ColorCard_P2 = RecognizeCard(CardP12,8)

NumberCard_P1 = int(RecognizeCard(CardP11,1))
NumberCard_P2 = int(RecognizeCard(CardP12,1))

if ColorCard_P1 == ColorCard_P2:

print{ “"Comp card's numbers®,ColorCard_P1,ColorCard_P2,NumberCard_P1,NumberCard_P2)
LT NumberCard_P1 = NumberCard_P2:

PlayerList1.append(CardP11)

PlayerList1.append(CardP12)

PlayerList2.append(CardP11)
PlayerList2.append(CardP12)

For end users, we recommend using IDLE 3.9 (Python) which is available here:
https://www.python.org/downloads/release/python-390/

The user will need 3 texts (e.g. Notepad++) to be saved at the same location:
1. CardDeck.txt

SvitlanaRadchenko@exe-coll.ac.uk page 31 | 39

https://www.python.org/downloads/release/python-390/

L3 Software Development Diploma Cgateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming a

2. NamesandPasswords.txt
3. GamesResult.txt
4. TopWinners.txt

Usage Instructions:
When you open Replit (web or Replit app):
- Step 1: Launch "Louise's Game" by clicking on the icon «Run»
- Step 2: You will be prompted to enter your player credentials to log in.
- Step 3: Once logged in, you can start a new game.
- Step 4: Track the game progress shown on the console

- Step 5: Answer questions 1=yes and 0=no to get information about the progress
of the game

Enjoy playing "Louise's Game" with your opponent and have fun!
Additional Information:

- Ensure that you have a stable internet connection to play the game with another
player.

- You can adjust game settings, such as sound and graphics, from the options
menu.

- If you encounter any issues or need assistance, refer to the game's help section
or contact customer support.

Feedback and Support:

- Provide feedback to the game developers regarding any issues, bugs, or
suggestions for improvement to help enhance the gaming experience for all
players.

- Contact customer support if you encounter technical difficulties or require
assistance with the game.

Troubleshooting:

- If you experience any technical difficulties during installation or gameplay, try
restarting your computer and relaunching the game.

- Check for updates to ensure you have the latest version of "Louise's Game."

- For further assistance, reach out to our support team via email or online chat.

2. HARDWARE REQUIREMENTS

The program was run and tested using Android phone (Replit app, on Android13) and PC
with a Windows10 OS. See the detailed hardware information below.

SvitlanaRadchenko@exe-coll.ac.uk page 32 | 39

L3 Software Development Diploma Cgateway

Unit number and Assignment title: Unit 3: Object-Oriented Programming a

System Requirements:
- Operating System: Windows 10/8/7
- Processor: Intel Core i3 or equivalent
- RAM: 4GB or higher - Graphics: Integrated or dedicated graphics card
- Storage: 1GB of free space

More specifically information you can see as an example below

Item

05 Mame

Version

Other OS Description
0S Manufacturer
System MName
System Manufacturer
System Model
System Type

System SKU
Processor

BIOS Version/Date
SMBIOS Version

BIOS Maode
BaseBoard Product

BaseBoard Version
Platform Role

Embedded Controller Version

BaseBoard Manufacturer

Value

Microsoft Windows 10 Enterprise
10.0.19045 Build 19045

Mot Available

Microsoft Corporation

A210648

HP

HP PraDesk 400 Gé Desktop Mini PC
x64-based PC

123V3ET#ABU

Intel(R) Core(TM]) i3-10500T CPU @ 2.30GHz, 2304 Mhz, 6 Core(s), 12 Logical ...
HP 523 Ver. 02.05.01, 05/01,/2021

3.2

9.148

UEFI

HP

871A

KBC Version 09.94.00

Desktop

3. SOFTWARE REQUIREMENTS:

1. Player Authentication:
Only authorized players should be able to access and play the game.
Implement a secure authentication system to verify player identities.
2. Deck Management:
The game’s deck should have 30 shuffled cards, each with a unique colour
(red, black, or yellow) and number (1-10 for each colour). Develop a
mechanism to manage and shuffle the deck.
3. Gameplay Rules:
Player 1 and Player 2 take turns drawing cards from the deck.
Determine the winner of each round based on the color and number
comparison rules specified.
Keep track of the cards won by the winning player after each round.
4. Color Comparison Rules:

Define the logic for determining the winning color when players have cards of

different colors (red beats black, black beats yellow, yellow beats red).
5. Round Completion:
The game continues until all cards in the deck are drawn. Ensure proper
handling of the end-game scenario.
6. Display Winning Player's Cards:
List all cards held by the winning player at the end of each round for
transparency and record-keeping purposes.

SvitlanaRadchenko@exe-coll.ac.uk

page 33 | 39

L3 Software Development Diploma Cgateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming a

7. External File Storage:
Store the name and quantity of cards held by the winning player in an external
file for data persistence and retrieval.

8. Leaderboard Functionality:
Implement a feature to display the names and quantities of cards held by the
top 5 players with the highest card counts based on the data stored in the
external file.

9. Error Handling:
Include error handling mechanisms to address any unexpected scenarios that
may occur during gameplay, such as invalid card draws or file access issues.

10.User Interface:
Design a user-friendly interface that clearly displays game information, player
actions, and results to enhance the gaming experience.

11.Scalability and Performance:
Ensure that the game can handle multiple concurrent players efficiently and that
the gameplay remains smooth even as the number of players increases.

4. TESTING
Testing of the program was done using the conditions outlined in paragraph 4.1

5. DATA STRUCTURES / ALGORITHMS
Deck of Cards.
e An array or list to represent the deck of cards.
e Each card can be represented as a structure or object containing
attributes like color, number, and status (e.g., in deck, played).
e The deck can be shuffled using appropriate algorithms
Player Information:
e Astructure or class to store player information, including name, score, and
cards held.
e Player data can be organized in a data structure like a hash table or
dictionary for efficient retrieval and updating.
Leaderboard
e A data structure to store and maintain player scores and rankings.
e This can be implemented using a sorted array, linked list, or priority queue
to quickly retrieve top players based on their scores.

ALGORITHMS

The program algorithms were implemented using Flowchart and are
demonstrated in paragraph 3.1

Requirement specifications for LUISE’S CARD GAME

Requirement specifications, also known as software requirements
specifications (SRS), are a comprehensive document that outlines the functional
and non-functional requirements of a software application. It serves as a blueprint

SvitlanaRadchenko@exe-coll.ac.uk page 34 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming ‘

for software development by detailing what the software should do, how it should
behave, and what constraints or limitations it must adhere to. Requirement
specifications are crucial for ensuring that the software meets the needs and
expectations of stakeholders, such as clients, users, and developers.

REQUIREMENT SPECIFICATIONS

FOR LUISE’S CARD GAME

INTRODUCTION The purpose of this document is to outline the software
PURPOSE AND requirements for developing Luise's Card Game, a two-player
SCOPE card game where players compete to win cards based on color

and number combinations.

The software will facilitate the gameplay of Luise's Card
Game, including managing the deck of 30 unique cards, enforcing
game rules, determining winners of each round, and storing
player data for future reference.

FUNCTIONAL Number of Players
REQUIREMENTS - The game will support only 2 players.

- Only authorized players are allowed to play the game.
Deck Management

- The deck will consist of 30 shuffled cards.

- Each card in the deck is unique.

- Each card has one of three colors: red, black, or yellow.

- Each card has a number from 1 to 10 for each color.
Gameplay Rules

- Player 1 takes the top card from the deck.

- Player 2 takes the next card from the deck.

- If both players have a card of the same color, the player

with the highest number wins.

- If players have cards of different colors, the winning color

hierarchy is as follows:

- RED beats BLACK

- BLACK beats YELLOW

- YELLOW beats RED

- The winner of each round keeps both cards.

- Players continue playing until there are no cards left in the

deck.
Winner Data Management

- Lists all cards held by the winning player after each round.

- Stores the name and quantity of cards of the winning

player in an external file.
Leaderboard Display
- Displays the name and quantity of cards of the top 5
players with the highest quantity of cards from the external
file.

SvitlanaRadchenko@exe-coll.ac.uk page 35 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming ‘

REQUIREMENT SPECIFICATIONS
FOR LUISE’S CARD GAME

NON-FUNCTIONAL SECURITY

REQUIREMENTS - Only authorized players can access and play the
game.

- Player data stored in external files will be encrypted
for security purposes.

MAINTAIN-ABILITY
Using coding standards

PERFORMANCE

- The game should be optimized to run smoothly without lag
or delays during gameplay

- The game should execute efficiently and without
noticeable delays, providing a smooth and responsive
user experience during gameplay.

- Performance Requirement: The game must load within 5
seconds on all supported devices to provide a smooth and
responsive user experience.

FLEXI-BILITY
- The game should work as given, without allowing users to
customize features, workflows, or settings to suit their

preferences.
USER STORIES User Story 1: Player Registration
USE CASES - As aregistered player, | want to be able to play the game

by providing my username and password.
As a player, | want to

User Story 2: Gameplay
- to play cards according to the game rules and see the
outcome of each round

User Story 3: Winner Declaration
- to know who the winner of each round is and see my own
progress in the game.

User Story 4: Leaderboard Display
- to see the leaderboard displaying the top players with the
highest quantity of cards.

User Story 5: Authentication
- tolog in securely with my credentials and ensure that
unauthorized users cannot access the game.

User Story 6: Usability
- the game interface to be user-friendly, responsive, and
easy to navigate.

SvitlanaRadchenko@exe-coll.ac.uk page 36 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming ‘

REQUIREMENT SPECIFICATIONS
FOR LUISE’S CARD GAME

BUSINESS RULES 1. Player Registration Rule:

- Players must register with a unique username and

password to access the game.
2. Game Setup Rule:

- The game must allow for a minimum of 2 and a maximum

of 4 players to participate in each game session.
3. Gameplay Rule:

- Players must follow the game rules when playing cards,

including following suit and playing valid cards.
4. Winner Declaration Rule:

- The winner of each round must be determined based on
specific criteria, such as the player with the highest card
value or the first player to play all their cards.

5. Data Management Rule:

- Game data, including player progress, scores, and game
settings, must be securely saved and retrieved for each
player.

6. Leaderboard Display Rule:

- The leaderboard must display the top players based on
the number of cards they have collected throughout the
game.

7. Authentication Rule:

- Players must log in securely using their credentials, and

unauthorized access to the game must be prevented.
8. Usability Rule:

- The game interface must be intuitive, responsive, and

accessible to players of all skill levels.

DATA 1. Player Authorization:

REQUIREMENTS - The system must store player credentials, including
usernames and passwords, for authorization purposes.

- Player status (authorized/unauthorized) must be
maintained in the system.

2. Deck Initialization:

- The system must store a deck of 30 unique cards with
attributes such as color and number.

- Each card in the deck must have a unique combination of
color and number. - The system must have a mechanism
to shuffle and store the deck in random order.

3. Game Play Mechanics:

- The system must track the cards played by each player
during the game.

- Winning player information, including the player's name
and the cards won, must be stored.

- Game state data, such as the number of cards remaining
in the deck, must be stored.

4., Data Storage and Display

- The system must maintain a record of all cards held by the
winning player after each round.

- Player data, including names and quantities of cards won,
must be stored in an external file for persistence.

SvitlanaRadchenko@exe-coll.ac.uk page 37 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming ‘

REQUIREMENT SPECIFICATIONS
FOR LUISE’S CARD GAME

- The system must retrieve and display the top 5 players
with the highest quantity of cards from the external file for
leaderboard display.

5.Data Portability:

- The game data should be stored in a format that allows for

easy transfer and access across different environments.

INTERFACE The user interface should be intuitive and easy to navigate for

REQUIREMENTS players.

COMPATIBILITY The game should be compatible with common operating systems

REQUIREMENTS and devices

PERFORMANCE The game should respond quickly to player actions and provide a

REQUIREMENTS: seamless gaming experience.

SECURITY - Only authorized players can access and play the game.

REQUIREMENTS - Player data stored in external files will be encrypted for security
purposes.

TESTING Functional Testing:

REQUIREMENTS - Verify that the game rules are correctly implemented.

- Test the card comparison logic to ensure that the correct
player wins based on color and number.

- Confirm that the deck shuffling and card distribution are
working as expected.

- Test the winner data management system to ensure it
accurately records and stores the winning player's
information.

Authorization Testing:

- Verify that only authorized players can access and play
the game.

- Test the authentication process to ensure that
unauthorized users are blocked from playing.

Data Management Testing:

- Test the storage and retrieval of player information in the
external file.

- Verify that the file is updated correctly after each round to
reflect the winning player's cards.

Leaderboard Display Testing:

- Confirm that the leaderboard displays the correct
information for the top 5 players with the highest quantity
of cards.

- Test the sorting mechanism to ensure that players are
ranked accurately based on their card quantity.

Integration Testing:

- Verify that all components of the game, including
gameplay, data management, and leaderboard display,
work together seamlessly.

- Test interactions between different modules to ensure
they communicate and function properly.

Usability Testing:

SvitlanaRadchenko@exe-coll.ac.uk page 38 | 39

L3 Software Development Diploma 39 ateway
Unit number and Assignment title: Unit 3: Object-Oriented Programming ‘

REQUIREMENT SPECIFICATIONS
FOR LUISE’S CARD GAME

- Gather feedback from users to assess the game's ease of
use and overall user experience.

- Test the game interface for clarity, responsiveness, and
intuitiveness.

Performance Testing:

- Evaluate the game's performance under various
conditions, such as different numbers of players or large
quantities of cards.

- Test for any potential bottlenecks or issues that may affect
gameplay.

By documenting and analysing these requirements in detail, requirement
specifications provide a clear roadmap for software development teams to design,
implement, test, and deliver a high-quality software application that meets stakeholder
expectations.

SvitlanaRadchenko@exe-coll.ac.uk page 39 | 39

	U3_1.1 The key features of object-oriented programming.
	SHORT DESCRIPTION OF KEY FEATURES OF OOP
	EXAMPLE OF KEY FEATURES (PYTHON)
	U3_1.2 Explain the importance of encapsulation, inheritance and polymorphism in object-oriented programming.
	U3_2.1 Demonstrate the use of object-oriented tools and techniques.
	U3_3.1 Design an object-oriented program
	U3_3.2 Develop an object-oriented program.
	U3_4.1 Test an object oriented program.
	Picture1 “Evidence1 for TC_3_ dec30”
	Picture2 Evidence for TC_4_UniqueCard
	Picture3_” Evidence for TC_5_shuffled”
	Picture4_”Evidence for TC_5_AfterShuffle”
	Picture5 “Evidence for TC_6_SameColor”
	Picture6 “Evidence for TC_7_DiffColor”
	Picture7 “Evidence for TC_8_ WinList”
	Picture8 “Evidence for TC_12_ TopWin”

	U3_4.2 Document appropriate action to correct errors.
	U3_4.3 Create technical documentation for the support and maintenance of the program.
	Installation and usage instructions
	Requirement specifications for LUISE’S CARD GAME

